
Chapter 5

Generative adversarial networks
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5.1 General principles

The goal of this chapter is to give insights and to provide theoretical guarantees for the so-called gen-
erative adversarial network (GAN) strategies in machine learning. Among others, applications include
the generation of images, video, text, music. Neat examples of generators trained with the GAN strat-
egy can be found here:

https://thisxdoesnotexist.com/

From a statistical point of view, we will see how it relates to density estimation. Before giving a general
definition, we introduce the idea of GANs via a more standard approach: maximum likelihood.

5.1.1 From maximum likelihood to generative adversariality

Assume that we observe an i.i.d. n-sample X1, . . . , Xn overRd , generated from an unknown probability
density p∗ : Rd → R. Consider the problem of estimating the density p∗ via maximum likelihood
within a class of densities P = {pθ}θ∈Θ, where Θ⊂Rp is some parameter space. To picture things out,
one can think of p∗ as being C β-smooth, and P consisting of all the Fourier series with p coefficients,
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parametrized by its coefficients inΘ= [−R,R]p . Here, provided it exists, the maximum (log-)likelihood
estimator (MLE) writes as

p̂MLE = pθ̂MLE
∈ argmax

θ∈Θ

1

n

n∑
i=1

log pθ(Xi ).

Informally, this estimator aims at estimating the limiting density1

pMLE ∈ argmax
θ∈Θ

lim
n→∞

1

n

n∑
i=1

log pθ(Xi )

= argmax
θ∈Θ

EX∼p∗
[
log pθ(X )

]
a.s.

From this formulation, we can link the MLE with the Kullback-Leibler divergence, an information-
theoretic measure of discrepancy between measure, which the definition writes as follows.

Definition 5.1 (Kullback-Leibler divergence). For two probability distributions P and Q on (Rd ,B(Rd )),
we define the Kullback-Leibler divergence between them as

KL(P∥Q) =
{
EX∼P

[
log

(
dP/dQ(X)

)]
, if P ≪Q,

+∞, otherwise.

Because

KL(P∥Q) = EX∼Q

[
log

( dP

dQ
(X )

) dP

dQ
(X )

]
and R≥0 ∋ u 7→ u logu is strictly convex, KL is non-negative and KL(P∥Q) = 0 if and only if P = Q.
However, separator ∥ is here to insist on the fact that KL is not symmetric. Given this formula, if p∗
and all the pθ’s dominate each other, we can reformulate the above expression via

argmax
θ∈Θ

EX∼p∗
[
log pθ(X )

]= argmax
θ∈Θ

EX∼p∗
[
log pθ(X )

]−EX∼p∗
[
log p∗(X )

]
= argmax

θ∈Θ
−EX∼p∗

[
log

(
p∗(X )/pθ(X )

)]
= argmin

θ∈Θ
KL(p∗∥pθ),

where we abused notation by identifying Lebesgue density functions with the associated probabil-
ity distributions. As a result, θ̂MLE can be seen as an empirical minimizer of the Kullback-Leibler
divergence to the target. Written this way, one directly sees the major drawbacks of the MLE. As a
Kullback-Leibler approach — with KL not defined for all pair of distributions and not symmetric —,
it is not intrinsic, and unstable with respect to model misspecification. To overcome this issue, one
may symmetrize the KL divergence in such a way that it is defined for all pair of distributions. This
symmetrized divergence is referred to as Jensen-Shannon.

Definition 5.2 (Jensen-Shannon divergence). Write µ = (P +Q)/2. By JS(P,Q), we denote the Jensen-
Shannon divergence

JS(P,Q) = 1

2
KL

(
P∥µ)+ 1

2
KL

(
Q∥µ)

.

The map (P,Q) 7→√
JS(P,Q) is a distance over the the of probability distributions over Rd .

1We insist on the fact that this derivation is only informal and does need to be properly justified, for instance via the regularity
of the model (pθ)θ∈Θ.
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Similarly as for KL, we may use JS to design an estimation strategy. Namely, the counterpart of
θMLE would naturally be defined as

θJS ∈ argmin
θ∈Θ

JS(p∗, pθ). (5.1)

From a purely theoretical point of view, the above expression can be made rigorous in very general
models. However, it is not very practical since it explicitly involves density functions, and hence nor-
malizing constants that can be hard to compute in high-dimensional settings or complicated models.
Alternatively, GANs leverage the following dual formulation of JS.

Proposition 5.3 (Dual formulation of JS). The set of all discriminator functions is

D∞ =
{

D :Rd → [0,1] measurable
}

.

For all Borel probability distributions P,Q over Rd ,

JS(P,Q)− log(2) = 1

2
max

D∈D∞

{
EX∼P [logD(X )]+EZ∼Q [log(1−D(Z ))]

}
.

Furthermore, if p and q denote respective density functions of P and Q with respect to µ = (P +Q)/2,
then the maximum on the right hand side is attained for

D∗
(P,Q)(x) = p(x)

p(x)+q(x)
.

Proof. For all D ∈D∞,

1

2
EX∼P [logD(X )]+ 1

2
EZ∼Q [log(1−D(Z ))]

= 1

2

∫
Rd

p(x) log(D(x))+q(x) log(1−D(x))µ(dx).

But for all (a,b) ∈ R2 \ {(0,0)}, the real map [0,1] ∋ y 7→ a log y +b log(1− y) achieves its maximum at
a/(a +b), so that

1

2
sup

D∈D∞

{
EX∼P [logD(X )]+ 1

2
EZ∼Q [log(1−D(Z ))]

}
= 1

2

∫
Rd

p(x) log

(
p(x)

p(x)+q(x)

)
µ(dx)+ 1

2

∫
Rd

q(x) log

(
1− p(x)

p(x)+q(x)

)
µ(dx)

= 1

2

∫
Rd

p(x) log

(
p(x)

p(x)+q(x)

)
µ(dx)+ 1

2

∫
Rd

q(x) log

(
q(x)

p(x)+q(x)

)
µ(dx),

and as (p + q)/2 = 1 since p and q are densities with respect to µ = (P +Q)/2, the right hand side
rewrites as

1

2

∫
Rd

p(x) log

(
p(x)

2

)
µ(dx)+ 1

2

∫
Rd

q(x) log

(
q(x)

2

)
µ(dx) = JS(P,Q)− log(2),

which concludes the proof.

As a result, an equivalent min-max formulation of (5.1) writes as

θJS ∈ argmin
θ∈Θ

max
D∈D∞

EX∼p∗ [logD(X )]+EZ∼pθ [log(1−D(Z ))], (5.2)

which GANs will exploit through an empirical version of it.



CHAPTER 5. GENERATIVE ADVERSARIAL NETWORKS 61

5.1.2 Goodfellow generative adversarial (networks)

Note that in the above discussion, we have gone a step towards a density-free formulation of the prob-
lem, as (5.1) uses likelihood explicitly in JS, while (5.2) does not. In the same random variable-oriented
spirit, GANs will only consider statistical models P =PΘ composed of pushforward distribution of a
simple-to-simulate distribution via maps called generators. That is, given a set of functions G from Rd

to itself, we consider the variant

θJS ∈ argmin
g∈G

max
D∈D∞

{
EX∼P∗ [logD(X )]+EY ∼Q0 [log(1−D(g (Y )))]

}
, (5.3)

where Q0 usually stands for the uniform distribution over [0,1]d , or the standard d-dimensional Gaus-
sian.

Finally, to design a consistent empirical counterpart of (5.3), we allow for considering subset of dis-
criminators D ⊂D∞. We are now in position to define the so-called vanilla (or Goodfellow [GPAM+14])
generative adversarial networks

Definition 5.4 (Goodfellow Generative Adversarial Estimator). Let X1, . . . , Xn be a n-sample with dis-
tribution P∗, defined on some measurable space (X,X ). Pick:

• An input distribution Q0 over a measurable space (Y,Y );

• A generator class G , composed of measurable functions g :Y→X;

• A discriminator class D, composed of measurable functions D :X→ [0,1] .

For all g ∈G , write Pg for the distribution of g (Y ) when Y ∼Q0.
Given an independent n-sample Y1, . . . ,Yn with distribution Q0, the Goodfellow generative adver-

sarial distribution estimator of P∗ is the plugin P ĝ , where

ĝ ∈ argmin
g∈G

max
D∈D

Ln(g ,D),

where

Ln(g ,D) = 1

2n

n∑
i=1

logD(Xi )+ 1

2n

n∑
j=1

log
(
1−D(g (Y j ))

)
. (5.4)

The min-max formulation of GANs explains the naming “adversarial”. It can be interpreted as a
two-player game, opposing the generator and the discriminator. More precisely,

(G ) The generator observes data X1, . . . , Xn only and does not know the true underlying distribution.
It tries to fool the discriminator by producing “fake samples” g (Y1), . . . , g (Yn) with g ∈G .

(D) Then, the discriminator is given the labelled data X1, . . . , Xn and Y1, . . . ,Yn , and its goals is to
classify them as best as it can with classifiers from the class D. Here, D(x) = 0 codes for “true
data” and D(x) = 1 for “fake data”.

As suggested by the previous section, if D is properly chosen, p ĝ is expected to converge towards a
minimizer of G ∋ g 7→ JS(p∗, pg ). Furthermore, if Q0 is well chosen and G rich enough, it shall hence
converge towards p∗ as n goes to infinity. See Section 5.3 for a more detailed discussion.

Remark 5.5. • In (5.4), the number of fake samples is equal to the number of real ones, but our
analysis is also valid when the number of fake instances is greater than n.

• The estimator ĝ is randomized, as it depends on external randomness arising from Y1, . . . ,Yn .
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• The above definition does not use neural networks at all, as generator and discriminator classes
G and D are kept fully general. However, in practice, these classes are usually built with neural
nets.

• As expected, GANs provide a somehow implicit statistical model: as it trains a generator to pro-
duce samples, this implicitly defines a probability distribution. Namely the distribution of sam-
ples that the network generates. Here, the model does not explicitly represent the probability distri-
bution itself through its density. For instance, one cannot directly derive the probability assigned
to a particular region of space given the candidate generator.

5.2 A zoology of generative-adversarial strategies

5.2.1 f -divergences

The above min-max GAN approach can be applied for other objective functions than JS. The key
property of JS is that it can be written as a supremum of a difference of expected values over a set of
test (discriminator) functions. One of the most commonly used family of such divergences is called
f -divergences.

Definition 5.6 ( f -Divergence). Write µ= (P +Q)/2. By D f (P∥Q), we denote the f -divergence,

D f (P∥Q) =
∫
X

q(x) f

(
p(x)

q(x)

)
µ(dx), (5.5)

where the generator function f :R+ →R is a strictly convex differentiable2 function satisfying f (1) = 0.

Here, the convexity of f and Jensen inequality ensure that D f (P∥Q) ≥ 0, and f (1) = 0 that D f (P∥Q) =
0 if and only if P =Q. To obtain a variational formula similar to Proposition 5.3, we express f itself as
a supremum. For this, consider the Fenchel conjugate f ∗ of f , also known as convex conjugate. It is
defined as

f ∗(t ) = sup
u∈Rd | f (u)<∞

{
ut − f (u)

}
. (5.6)

One easily checks that f ∗ is convex3 and lower-semi-continuous if f is lower-semi-continuous. Fur-
thermore, if f is convex, then the pair ( f , f ∗) is dual to another in the sense that f ∗∗ = f . That is, we
have

f (u) = sup
t∈Rd | f ∗(t )<∞

{
tu − f ∗(t )

}
.

Therefore,

D f (P∥Q) =
∫
Rd

q(x) sup
t∈Rd | f ∗(t )<∞

{
t

p(x)

q(x)
− f ∗(t )

}
µ(dx)

For all x ∈ Rd , the supremum of t 7→ t p(x)/q(x)− f ∗(t ) is attained for p(x)/q(x)− ( f ∗)′(t ) = 0. But
since f ′ ◦ ( f ∗)′(t ) = f ′ ◦ ( f ∗)′(t ) = t for all t , this is equivalent to t = f ′(p(x)/q(x)). Hence, given any
class T of measurable functions T :Rd →R,

D f (P∥Q) ≥ sup
T∈T

{∫
Rd

p(x)T (x)µ(dx)−
∫
Rd

q(x) f ∗(T (x))µ(dx)

}
= sup

T∈T

{
EX∼P [T (X )]−EZ∼Q

[
f ∗(T (Z ))

]}
,

2Generalizations of f -divergences to lower-semi-continuous (i.e. liminfx→x0 f (x) ≥ f (x0) for all x, i.e. sublevel sets { f ≤ y}
are closed, i.e. infima of f on compact sets are attained) convex f is also standard. We omit this aspect for sake of simplicity.

3Even if f is not.
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Discrepancy Convex function f (u) Conjugate f ∗(t ) Optimal T ∗
(P,Q)(x)

Total Variation 1
2 |u −1| t1[−1/2,1/2]

1
2 sign( p(x)

q(x) −1)

Kullback-Leibler u logu exp(t −1) 1+ log p(x)
q(x)

Pearson χ2 (u −1)2 t + t 2/4 2( p(x)
q(x) −1)

Squared Hellinger
(p

u −1
)2 t/(1− t ) (

√
p(x)
q(x) −1) ·

√
q(x)
p(x)

Jensen-Shannon u logu − (u +1)log 1+u
2 − log(2−exp(t )) log 2p(x)

p(x)+q(x)

Table 5.1: Adapted from [NCT16]. List of convex functions f , conjugate f ∗(t ), and optimal T ∗
(P,Q)(x)

(Proposition 5.7), for some classical f -divergences D f (P∥Q) (Definition 5.6). Note that for the total
variation distance, f is not differentiable everywhere. Though, the proof of Proposition 5.7 can be
adapted using sub-differential arguments.

with equality when T contains the map

T̃ ∗
(P,Q)(x) = f ′

(
p(x)

q(x)

)
.

This yields the following result.

Proposition 5.7 (Variational formulation of f -Divergences). Let T be a class of measurable functions
T :Rd →R that contains the map T̃ ∗

(P,Q)(x) = f ′ (p(x)/q(x)
)
. Then,

D f (P∥Q) = sup
T∈T

{
EX∼P [T (X )]−EZ∼Q

[
f ∗(T (Z ))

]}
.

Some of the most standard f -divergences are displayed in Table 5.1, with their associated convex
conjugate and discriminator function T ∗

(P,Q).

Remark 5.8. To explicitly connect notation of Proposition 5.3 and Proposition 5.7, take T = log2D.

Exercise 5.9 ( f -GANs). Similarly to the Goodfellow GANs (Definition 5.4), design a f -generative adver-
sarial density estimator with a f -divergence as an objective function.

5.2.2 Integral probability metrics

Studying f -divergences in the previous section led to variational formulation of discrepancies be-
tween probability measures, taking the form

sup
T∈T

{
EX∼P [T (X )]−EZ∼Q

[
f ∗(T (Z ))

]}
,

where T is a rich-enough class of functions T : Rd → R and f ∗ convex. Even for itself, this formula
actually yields important discrepancies by only considering f ∗(t ) = t but with specific classes T . They
are usually referred to as integral probability metrics (IPM).

Definition 5.10 (Integral Probability Metric). Let D∞ be a class of measurable functions D : Rd → R

called discriminators. Given two probability distributions P and Q on (Rd ,B(Rd )), IPMD∞ (P,Q) is de-
fined as

IPMD∞ (P,Q) = sup
D∈D∞

∣∣EX∼P [D(X )]−EZ∼Q [D(Z )]
∣∣ .
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Discrepancy Discriminator class D∞ Comment

Total Variation {D : ∥D∥∞ ≤ 1} Also a f -divergence
Wasserstein 1

{
D : ∥D∥Lip ≤ 1

}
Also a transport distance

Bounded Lipschitz
{
D : ∥D∥∞+∥D∥Lip ≤ 1

}
Kolmogorov

{
1(−∞,t ]

}
t∈R Only defined for d = 1

Table 5.2: List of classical integral probability metrics over Rd . Here, ∥D∥∞ = supx∈Rd |D(x)| and
∥D∥Lip = supx ̸=y∈Rd | f (x)− f (y)|/∥x − y∥.

The discrepancy IPMD∞ clearly is non-negative, symmetric, and finite provided that D∞ is not too
wild. On the other hand, it satisfies separation if D∞ is rich enough, hence making IPMD∞ a metric
over the space of distributions. See Table 5.2 for a few standard examples of integral probability met-
rics. As expected, the fact that IPMD∞ writes as a supremum naturally yields generative-adversarial
strategies.

Exercise 5.11 (IPM-GANs). Similarly to the Goodfellow GANs (Definition 5.4), design a generative ad-
versarial density estimator based on an integral probability metric.

Remark 5.12 (Wasserstein GANs). The most broadly used IPM-GANs correspond to D∞ = {∥D∥Lip ≤ 1
}

and are usually referred to as Wasserstein GANs.

5.3 A heuristic for optimality of GANs

In addition to providing random generators and being implementable in practice for high-dimensional
data, generative adversarial strategies share the nice feature of mimicking optimal estimation schemes.
Indeed, they can roughly be thought of as risk minimization, where the risk is an actual discrepancy
between probability measures.

To see this, consider the pushforward distribution P ĝ := ĝ♯Q0 of an f -GAN with generator class G

and discriminator D. That is, given sample X1, . . . , Xn generated from P∗ and Y1, . . . ,Yn from Q0, define

ĝ ∈ argmin
g∈G

max
D∈D

Ln(g ,D),

where for all g ∈G and D ∈D,

Ln(g ,D) := 1

n

n∑
i=1

D(Xi )− 1

n

n∑
j=1

f ∗(
D(g (Y j ))

)
.

We also denote the integrated version of Ln(g ,D) by

L(g ,D) := EX∼P [D(X )]−EY ∼Q0

[
f ∗(

D(g (Y ))
)]

Heuristic. Going from integrated to sample quantities, we write

D f (P ĝ ,P∗) = sup
D∈D∞

L(g ,D) From Proposition 5.7,

≃ sup
D∈D

L(ĝ ,D) If D is rich enough,

≃ sup
D∈D

Ln(ĝ ,D) If n is large enough,

= inf
g∈G

sup
D∈D

Ln(g ,D) By definition of ĝ .
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Then unraveling this expression, we have

inf
g∈G

sup
D∈D

Ln(g ,D) ≃ inf
g∈G

sup
D∈D

L(g ,D) If n is large enough,

≤ inf
g∈G

sup
D∈D∞

L(g ,D) If D ⊂D∞,

= inf
g∈G

D f (Pg ,P∗) From Proposition 5.7 again.

See Remark 5.17 for a more precise heuristic taking into account bias terms.

That is, in the limit n →∞ and under approximation assumptions on D, the output distribution
P ĝ performs approximately as good as the best distribution in the model

{
Pg

}
g∈G

for the distance D f ,

in the sense that

D f (P ĝ ,P∗)≲ inf
g∈G

D f (Pg ,P∗).

This property, called oracle inequality, will be made rigorous in Section 5.4.2 in the Jensen-Shannon
case.

5.4 Non-asymptotic performance of Goodfellow GANs

This section, mostly borrowed from [BMN+21], studies the minimax convergence rates for density
estimation with Goodfellow GANs. The main result (Exercise 5.21) relies on a general oracle bound for
Goodfellow GANs (Theorem 5.16), which is applied to well-chosen classes G and D of neural networks
(Theorem 5.19) for Hölder-smooth underlying densities (Assumption 5.13).

5.4.1 Notation

Pushforward density For all smooth one-to-one map g : Y 7→ X, and random variable Y ∈ Y with
density φ, a change of variable easily yields that the image g (Y ) of Y has density

pg (x) = |det[∇g (g−1(x))]|−1φ(g−1(x)), x ∈X.

In what follows, we will only consider φ being the uniform density over compact Y with Vol(Y) = 1, so
that we get the expression

pg (x) = |det[∇g (g−1(x))]|−1, x ∈X.

Function smoothness and Hölder classes For all integer s ≥ 1, the function class C s (Ω) denotes the
set of functions over the domainΩwhich have bounded and continuous partial derivatives up to order
s. More precisely,

C s (Ω) := {
f :Ω→Rm : ∥ f ∥C s := max

|γ|≤s
∥Dγ f ∥L∞(Ω) <∞}

,

where, for all multi-index γ= (γ1, . . . ,γd ) ∈Nd
0 , the partial differential operator Dγ is defined as

Dγ fi = ∂|γ| fi

∂xγ1
1 · · ·∂xγd

d

, i ∈ {1, . . . ,m} , and ∥Dγ f ∥L∞(Ω) = max
1≤i≤m

∥Dγ fi∥L∞(Ω) ,

where |γ| := ∑d
i=1γi is the order of Dγ. For order one, we use the usual notation ∇ f = (∂ fi /∂x j ) i =

1, . . . ,m, j = 1, . . . ,d .
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Given a C 2 function ϕ : Rd 7→ R, we write ∇2ϕ(x) ∈ Rd×d for its Hessian at x ∈ Ω. For a function
f :Ω→Rm and any positive number 0 < δ≤ 1, the Hölder constant of order δ is defined as

[ f ]δ := max
i∈{1,...,m}

sup
x ̸=y∈Ω

| fi (x)− fi (y)|
min{1,∥x − y∥}δ

. (5.7)

Now, for all α > 0, we can define the Hölder ball H α(Ω, H). If we let s = ⌊α⌋ be the largest integer
strictly less than α, H α(Ω, H) contains all functions in C s (Ω) with δ-Hölder-continuous, δ=α− s > 0,
partial derivatives of order s. Formally,

H α(Ω, H) = {
f ∈C s (Ω) : ∥ f ∥H α := max{∥ f ∥C s , max

|γ|=s
[Dγ f ]δ} ≤ H

}
.

Note that if f ∈H 1+β(Ω, H) for some β> 0, then it holds for i = 1, . . . ,m, j = 1, . . . ,d ,∣∣∣∣∂ fi (x)

∂x j
− ∂ fi (y)

∂x j

∣∣∣∣≤ ∥ f ∥H 1+β · ∥x − y∥1∧β ≤ H · ∥x − y∥1∧β,

for all x, y ∈Ω, since ∥ f ∥H β1 ≤ ∥ f ∥H β2 for all β2 ≥ β1. We will also write f ∈ H α(Ω) if f ∈ H α(Ω, H)
for some H <∞. We also introduce a class ofΛ-regular functions H α

Λ (Ω, H),Λ> 1:

H α
Λ (Ω, H) = {

f ∈H α(Ω, H) :Λ−2Idd×d ⪯∇ f ⊤∇ f (x) ⪯Λ2Idd×d for all x ∈Ω}
, (5.8)

where for symmetric matrices A,B ∈Rd×d we write A ⪯ B if u⊤(B − A)u ≥ 0 for all u ∈Rd .

5.4.2 A general oracle inequality

This section is devoted to the statement of a general oracle inequality for density estimation with
Goodfellow GANs (Theorem 5.16). For this, let us list the assumptions to made to obtain it. We first
require smoothness and specific form of the target density.

Assumption 5.13 (On p∗). There exist constants β> 2, H∗ > 0 andΛ> 1 such that p∗ is of the form

p∗(x) := pg∗ (x) = |det[∇g∗((g∗)−1(x))]|−1, x ∈X,

for some g∗ ∈H
1+β
Λ

(Y, H∗).

In particular, this implies that g∗ is β-Hölder. Even more precisely, we have that p∗ can actually be

represented as the density of a random variable g∗(Y ), for some g∗H
1+β
Λ

(Y, H∗) and Y uniform over
Y with Vol(Y) = 1.

Given this assumption, it is then natural to require that the generator class G is a subset of “the
true space” H 2

Λ(Y, HG ). In short, this means that the estimator ĝ and its target g∗ will live in the same
regularity space. However, note that g∗ needs not actually be in G . Also, generators being forced to be
well-conditioned diffeomorphisms will greatly simplify proof technicalities.

Assumption 5.14 (On G ). The latent random elements Y1, . . . ,Yn are uniformly distributed on a com-
pact set Y with Vol(Y) = 1. Moreover, there exist HG > 0 and Λ > 1 such that the class of generators
fulfills

G =G (Λ, HG ) ⊆H 2
Λ(Y, HG ) .

Finally, we require smoothness of the generator classes, in the following sense.
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Assumption 5.15 (On D). There exist constants HD > 0 and 0 < Dmin ≤ Dmax < 1 such that

D =D(Dmin,Dmax, HD) ⊆H 1(X, HD),

and each D ∈D satisfies
D(x) ∈ [Dmin,Dmax] ⊂ (0,1) for all x ∈X.

To get insights on this assumption, recall that under Assumption 5.13, p∗ = pg∗ with g∗ at least
Cβ+1. Furthermore, from Proposition 5.3, the optimal discriminator between p∗ and a candidate gen-
erator g ∈G is D∗

g := pg∗/(pg +pg∗ ). Hence, for the adversary, this means that there is no need to seek

for a discriminator that is not smooth, and that keeping its search space within H 1 is sufficient. Fur-
thermore, as ĝ converges to g∗ (in H 1), D∗

ĝ goes to 1/2. As a result, only considering discriminators

bounded away from 0 and 1 is also sufficient.
We are now in position to state the sharp oracle inequality for general classes G and D satisfying

Assumptions 5.14 and 5.15.

Theorem 5.16 ([BMN+21, Theorem 1]). Suppose that Assumptions 5.13, 5.14, and 5.15 hold. Let

r 0
n(D) = log

(
N (D,∥ ·∥L∞(X),1/n)

)
,

and
r 1

n(G ) = log
(
N (G ,∥ ·∥H 1(Y),1/n)

)
,

where N (G ,∥ · ∥H 1(Y),1/n) and N (D,∥ · ∥L∞(X),1/n) are (1/n)-covering numbers of the classes G and
D, respectively. Then for all δ ∈ (0,1/4), with probability at least 1−4δ,

JS(p ĝ , p∗)−∆G −∆D ≲

√
∆G

(
r 1

n(G )+ log(2/δ)
)

n

+
√
∆D

(
r 1

n(G )+ r 0
n(D)+ log(2/δ)

)
n

(5.9)

+
(
r 1

n(G )+ r 0
n(D)+ log(2/δ)

)
n

,

where

∆G := min
g∈G

JS(pg , p∗),

∆D := max
g∈G

∣∣JS(p∗, pg )−max
D∈D

(
L(g ,D)+ log2

)∣∣,
and

D∗
g (x) := p∗(x)

p∗(x)+pg (x)
, x ∈X. (5.10)

Remark 5.17 (On Intrinsic Biases of GANs). • ∆G is called generator bias, and ∆D is called discrimi-
nator bias. To see why, assume that you have access to an infinite sample (i.e. n →∞ with fixed G

and D, i.e. replace Ln(g ,D) by its integrated version L(g ,D)), and consider

g̃ ∈ argmin
g∈G

max
D∈D

L(g ,D).
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Also consider the generator g ∈ G for which pg best approximates p∗ in Jensen-Shannon distance.
That is, JS(p∗, pg ) := ming∈G JS(p∗, pg ) =∆G . Equivalently, from Proposition 5.3, we can write

g ∈ argmin
g∈G

max
D :X→[0,1]
measurable

L(g ,D).

Hence, since from Proposition 5.3, L(g ,D∗
g ) = JS(p∗, pg )− log(2), we have

JS(p∗, p g̃ ) = JS(p∗, pg )+ (
JS(p∗, p g̃ )− JS(p∗, pg )

)
=∆G +

(
L(g̃ ,D∗

g̃ )−L(g ,D∗
g )

)
=∆G + (

L(g̃ ,D∗
g̃ )−max

D∈D
L(g̃ ,D)︸ ︷︷ ︸

B1

)+ (
max
D∈D

L(g̃ ,D)−L(g ,D∗
g )︸ ︷︷ ︸

B2

)
.

But rewriting the first term of the right-hand side, we notice that since g̃ ∈G ,

B1 = min
D∈D

{
L(g̃ ,D∗

g̃ )−L(g̃ ,D)
}

≤ max
g∈G

min
D∈D

{
L(g̃ ,D∗

g̃ )−L(g̃ ,D)
}

=:∆D .

Finally, B2 actually is non-positive, since D consists only of measurable maps D :X→ [0,1], and

B2 = min
g∈G

max
D∈D

L(g ,D)−min
g∈G

max
D :X→[0,1]
measurable

L(g ,D) ≤ 0.

• From the AM–GM inequality
p

ab ≤ (a+b)/2, (5.9) can be cast into a simpler form: it yields that with
probability at least 1−δ,

JS(p ĝ , p∗)≲∆G +∆D +
(
r 1

n(G )+ r 0
n(D)+ log(1/δ)

)
n

.

However, (5.9) is written so as to exhibit the optimal bias terms ∆G and ∆G , with no extra multiplica-
tive constants possibly hidden using the ≲ sign.

Sketch of proof of Theorem 5.16. In what follows, we let

g ∈ argmin
g∈G

JS(p∗, pg ),

so that JS(p∗, pg ) = ∆G = L(g ,D∗
g

)+ log2. For short, we also let F (g ) := JS(p∗, pg ) = L(g ,D∗
g )+ log(2),

and Fn(g ) := Ln(g ,D∗
g )+ log(2) its empirical counterpart (see (5.4)), so that by definition of ĝ ,

ĝ ∈ argmin
g∈G

max
D∈D

Ln(g ,D).

Given this notation, we write

JS(p∗, p ĝ )−∆G = F (ĝ )−F (g )

= (
F (ĝ )−Fn(ĝ )︸ ︷︷ ︸

T1

)+ (
Fn(ĝ )−Fn(g )︸ ︷︷ ︸

T2

)+ (
F (g )−Fn(g )︸ ︷︷ ︸

T3

)
. (5.11)
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• Terms T1 and T3 both consist of a difference between F (g ) and its empirical counterpart Fn(g ), for
g ∈ {

ĝ , g
}⊂G . We will hence use a union bound together with a covering number argument.

– For the covering argument, elementary differential calculus yields that for all g0, g1 ∈ G , |F (g0)−
F (g1)|≲ ∥pg0 −pg1∥L∞(X) ≲ ∥g0 − g1∥H 1(Y), so that we need to cover G in H 1 norm.

– Then, for all fixed g ∈G , we derive a concentration inequality of Fn(g ) around its mean E[Fn(g )] =
F (g ) using Bernstein inequality. As a sum of independent variables, the variance of Fn(g ) writes
as

Var(Fn(g )) =
Var

(
log

(
D∗

g (X )
))+Var

(
log

(
1−D∗

g (Y )
))

4n

=
Var

(
log

(
2D∗

g (X )
))+Var

(
log

(
2(1−D∗

g (Y ))
))

4n
.

This last expression with an extra factor 2 in the log allows to recognize distance terms. Namely,
by definition of D∗

g ,

Var
(
log

(
2D∗

g (X )
)≤ E[log2(2D∗

g (X )
)]

=
∫
X

log2
(

2p∗

p∗+pg

)
p∗

=
∫
X

log2
(
1+ p∗−pg

p∗+pg

)
p∗

≲
∫
X

(p∗−pg )2p∗

= ∥p∗−pg ∥2
L2(p∗)

≲ F (g )

= JS(p∗, pg ),

where the ≲ inequalities come from the fact that both p∗ and pg are bounded away from zero
and infinity on X, which is a consequence of g∗ and g being well-conditioned diffeomorphisms
(Assumptions 5.13 and 5.14). Similarly, we have Var

(
log

(
2(1−D∗

g (Y )
))
≲ F (g ).

Remark 5.18. Note that here, up to constants, the variance of Fn(g ) is bounded by its expectation
F (g ) = JS(p∗, pg ). This phenomenon, called variance localization in stochastic process theory, yields
that the closer g is from g∗, the better Fn(g ) concentrates around its mean. Technically speaking, it
is this phenomenon that allows for stochastic terms of order

p
∆G /n and

p
∆D/n (with∆G ,∆D → 0)

instead of only
p

1/n in the final bound.

As a result, from Bernstein inequality, for g = g , we obtain

T3 ≲

√
F (g ) log(1/δ)

n
=

√
∆G log(1/δ)

n
.

For g = ĝ , applying Bernstein again together with the equality Fn(ĝ ) = Fn(g )+T2 then allows to
conclude4 the study of T1 and T3, provided that we derive a bound on T2.

• Now examining T2 = Fn(ĝ )−Fn(g ), let us introduce

D̂g ∈ argmax
D∈D

Ln(g ,D)

4A few steps skipped here. See [BMN+21] for a fully detailed derivation.
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for the (empirically) selected discriminator against fixed candidate generator g ∈ G . Similarly as
above, we decompose T2 as

T2 = Ln(ĝ ,D∗
ĝ )−Ln(g ,D∗

g )

= (
Ln(ĝ ,D∗

ĝ )−Ln(ĝ ,D̂ ĝ )︸ ︷︷ ︸
T2,1

)+ (
Ln(ĝ ,D̂ ĝ )−Ln(g ,D̂g )︸ ︷︷ ︸

T2,2

)+ (
Ln(g ,D̂g )−Ln(g ,D∗

g )︸ ︷︷ ︸
T2,3

)
.

By definition of ĝ and the fact that g ∈ G , we have T2,2 ≤ 0. On the other hand, T2,1 and T2,3 both
have the form Ln(g ,D∗

g )−Ln(g ,D̂g ) for some g ∈G . Similarly as above, Bernstein inequality on the
quantity |Ln(g ,D)−L(g ,D)−Ln(g ,D∗

g )+L(g ,D∗
g )| for all g ∈ G , and a covering argument allows to

conclude. Although we do not detail this derivation, notice that here, the covering of D is only made
in L∞(X) norm, since L(g ,D0)−L(g ,D1) ≲ ∥D0 −D1∥L∞(X). Also note that the final bound naturally
makes ∆D appear, since T2,3 tends to essentially be negative, and T2,1 = Ln(ĝ ,D∗

ĝ )− Ln(ĝ ,D̂ ĝ ) to

concentrate around L(ĝ ,D∗
ĝ )− L(ĝ ,D ĝ ) with D ĝ ∈ argmax D∈D L(ĝ ,D) being the (integrated-)best

discriminator of D between p∗ and p ĝ , hence yielding T2,1 ≤∆D up to stochastic terms.

5.4.3 Building generators with deep nets

We now build classes of neural networks G and D to be plugged in Theorem 5.16, in the case where
the underlying distribution p∗ is β-Hölder. These network classes should hence approximate Hölder
classes of order β and β+1 in L∞ and H 1 norms respectively. As shown in Theorem 4.5, one could
actually achieve precision ε with ReLU networks having constant depth and at most O(ε−d/β) coef-
ficients. However, these networks would not themselves be Hölder smooth for β > 1. Hence, such
network classes cannot fulfill Assumptions 5.14 and 5.15.

Instead, we use ReQU activation function ρ(u) = (u+)2, which allow to realize any piecewise poly-
nomial exactly. In particular, ReQU networks allow to realize splines exactly, which are designed to be
smooth at points of “piece gluing”.

Theorem 5.19 ([BMN+21, Proposition 3] Simplified). Let β > 2 and let p,d ,K ∈ N. Then, for all f :
[0,1]d → Rp , f ∈ H β([0,1]d , H), there exists a neural network Φ f : [0,1]d → Rp with ReQU activation
function ρ(u) = (u+)2 such that:

• For all ℓ ∈ {0, . . . ,⌊β⌋},
∥∥ f −Φ f

∥∥
H ℓ([0,1]d ) ≲

H

K β−ℓ ;

• Φ f is such that L(Φ f )≲ 1 , ∥Φ f ∥0 ≲ p(K +β)d , and W (Φ f )≲ p(K +β)d ;

• Φ f ∈H ⌊β⌋([0,1]d , H0) with H0 = H +Cd ,β,⌊β⌋H/K β−ℓ .

Proof of Theorem 5.19. See [BMN+21, Proposition 3].

As a direct consequence, we obtain the following ready-to-use corollary.

Corollary 5.20. Let β > 2. Then for sufficiently small ε > 0, there exists a class G of ReQU neural net-
works such that for all Φ ∈G , L(Φ) =O (1), ∥Φ∥0 =O(ε−d/β), W (Φ) =O(ε−d/β), and such that

sup
g∗∈H

β+1
Λ

(Y,H∗)

inf
Φ∈G

∥Φ− g∗∥H 1(Y) ≤ ε.

Moreover, if Assumption 5.13 is fulfilled, there exists a class D of ReQU neural networks such that for all
Φ̃ ∈G , L(Φ̃)≲ 1, ∥Φ̃∥0 ≲ ε−d/β, W (Φ̃)≲ ε−d/β, and such that

sup
Φ∈G

inf
Φ̃∈D

∥D∗
Φ− Φ̃∥L∞(X) ≤ ε.

Here the hidden constants in ≲ depend on d ,⌊β⌋, and H∗.
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5.4.4 Minimaxity of Goodfellow GANs

Building upon the two previous sections, we are finally able to derive the main result of Section 5.4.

Exercise 5.21 (Rate of convergence for Goodfellow GANs). Combine Theorem 5.16 and Corollary 5.20
to show that under Assumption 5.13, a suitable choice of neural network classes G and D yields a Good-
fellow GAN strategy with associated density estimator p ĝ that satisfies

JS(p∗, p ĝ )≲
(

logn

n

)2β/(2β+d)

+ log(1/δ)

n

with probability at least 1−δ. Comment on this rate of convergence.
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